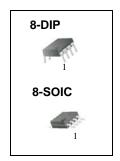


Is Now Part of

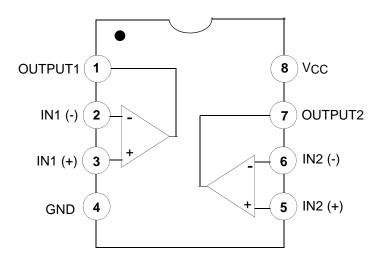
ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

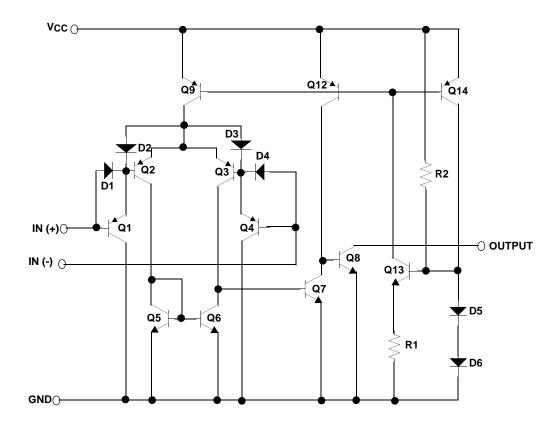
ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, emplo


LM2903,LM393/LM393A,LM293A Dual Differential Comparator

Features


- Single Supply Operation: 2V to 36V
 Dual Supply Operation: ±1V to ±18V
- Allow Comparison of Voltages Near Ground Potential
- Low Current Drain 800µA Typ.
- Compatible with all Forms of Logic
- Low Input Bias Current 25nA Typ.
- Low Input Offset Current ±5nA Typ.
- Low Offset Voltage ±1mV Typ.

Description


The LM2903, LM393/LM393A, LM293A consist of two independent voltage comparators designed to operate from a single power supply over a wide voltage range.

Internal Block Diagram

Schematic Diagram

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Power Supply Voltage	Vcc	±18 or 36	V
Differential Input Voltage	VI(DIFF)	36	V
Input Voltage	VI	-0.3 to +36	V
Output Short Circuit to GND	-	Continuous	-
Power Dissipation, T _a = 25°C 8-DIP 8-SOIC	PD	1040 480	mW
Operating Temperature LM393/LM393A LM2903 LM293A	TOPR	0 ~ +70 -40 ~ +105 -25 ~ +85	°C
Storage Temperature	TSTG	-65 ~ +150	°C

Thermal Data

Parameter	Symbol	Value	Unit
Thermal Resistance Junction-Ambient Max. 8-DIP 8-SOIC	R _{θja}	120 260	°C/W

Electrical Characteristics

(VCC = 5V, $T_A = 25$ °C, unless otherwise specified)

Parameter	Symbol	Conditions		LM293A/LM393A			LM393			Unit	
r ai ainietei Sylliboi		Conditions		Min.	Тур.	Max.	Min.	Тур.	Max.	Ullit	
Input Offset VIO		$VO(P) = 1.4V$, $RS = 0\Omega$		-	±1	±2	-	±1	±5	mV	
Voltage	VIO	V _{CM} = 0 to 1.5V	Note1	-	-	±4.0	-	-	±9.0	111 V	
Input Offset Current I	lio			ı	±5	±50	-	±5	±50	nA	
Input Onset Current	110		Note1	1	-	±150	-	-	±150		
Input Bias Current	IBIAS			ı	65	250	-	65	250	nA	
Input bias Current	IDIAS		Note1	ı	-	400	-	-	400	11/7	
Input Common Mode	V _{I(R)}			0	-	VCC -1.5	0	-	VCC -1.5	V	
Voltage Range			Note1	0	-	VCC-2	0	-	VCC-2		
Supply Current	loo	$R_L = \infty$, $V_{CC} = 8$	5V	-	0.6	1	-	0.6	1	mA	
Supply Current	ICC	R _L = ∞, V _C C = 30V		-	0.8	2.5	-	0.8	2.5	IIIA	
Voltage Gain	Gv	VCC =15V, RL ≥ 15kΩ (for large VO(P-P)swing)		50	200	-	50	200	-	V/mV	
Large Signal Response Time	T _{LRES}	V_I =TTL Logic Swing V_{REF} =1.4 V , V_{RL} = 5 V , R_L = 5.1 $k\Omega$		-	350	-	-	350	-	nS	
Response Time	TRES	V_{RL} =5V, R_{L} =5.1k Ω		-	1.4	-	-	1.4	-	μS	
Output Sink Current	ISINK	$V_{I(-)} \ge 1V, \ V_{I(+)} = 0V, \ V_{O(P)} \le 1.5V$		6	18	-	6	18	-	mA	
Output Saturation ,	VSAT	V _I (-) ≥ 1V, VI(+)	= 0V	-	160	400	-	160	400	mV	
Voltage	VSAI	ISINK = 4mA	Note1	1	-	700	-	-	700	IIIV	
Output Leakage	lou ko	V _{I(-)} = 0V,	VO(P) = 5V	-	0.1	-	-	0.1	-	nA	
Current	IO(LKG)	$V_{I(+)} = 1V$	V _O (P) = 30V	ı	-	1.0	-	-	1.0	μΑ	

Note1

$$\begin{split} LM393/LM393A: \ 0 &\leq T_A \leq +70^{\circ}C \\ LM2903: \ -40 &\leq T_A \leq +105^{\circ}C \\ LM293A: \ -25 &\leq T_A \leq +85^{\circ}C \end{split}$$

Electrical Characteristics (Continued)

(VCC = 5V, $T_A = 25$ °C, unless otherwise specified)

Davamatar	Cumbal	Conditions		LM2903			11	
Parameter	Symbol			Min.	Тур.	Max.	Unit	
Innut Offact Valtage	Vio	VO(P) =1.4V, RS = 0	-	±1	±7	m\/		
Input Offset Voltage		V _{CM} = 0 to 1.5V	Note1	-	±9	±15	- mV	
Innut Offeet Current	lio			-	±5	±50	n 1	
Input Offset Current	lio		Note1	-	±50	±200	nA	
Input Pice Current	Inua		- 65		65	250	- A	
Input Bias Current	IBIAS		Note1	-	-	500	nA	
Input Common Mode	V _I (R)			0	-	VCC -1.5	V	
Voltage Range	1(11)		Note1	0	-	Vcc-2		
Supply Current	loo	R _L = ∞, V _C C = 5V		-	0.6	1	mΛ	
Supply Current	ICC	$R_L = \infty$, $V_{CC} = 30V$		-	1	2.5	mA	
Voltage Gain	GV	VCC =15V, RL≥15kΩ (for large VO(P-P)swing)		25	100	-	V/mV	
Large Signal Response Time	TLRES	V _I =TTL Logic Swing VREF =1.4V, VRL = 5V, RL = 5.1kΩ		-	350	-	nS	
Response Time	TRES	$V_{RL} = 5V$, $R_{L} = 5.1k\Omega$		-	1.5	-	μS	
Output Sink Current	ISINK	$VI(-) \ge 1V, \ VI(+) = 0V, \ VO(P) \le 1.5V$		6	16	-	mA	
Output Saturation Valtage	VSAT	$V_{I(-)} \ge 1V, \ V_{I(+)} = 0V$		-	160	400	mV	
Output Saturation Voltage		ISINK = 4mA	Note1	-	-	700] ''''	
Output Leakage Current	IO(LKG)	VI(-) = 0V,	VO(P) = 5V	-	0.1	-	nA	
Output Leakage Guiteill		V _{I(+)} = 1V V _{O(P)} = 30V		-	-	1.0	μΑ	

Note1

LM393/LM393A: $0 \le T_A \le +70^{\circ}C$ LM2903: $-40 \le T_A \le +105^{\circ}C$ LM293A: $-25 \le T_A \le +85^{\circ}C$

Typical Performance Characteristics

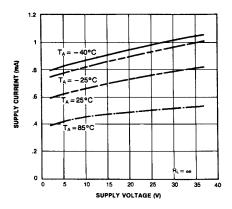


Figure 1. Supply Current vs Supply Voltage

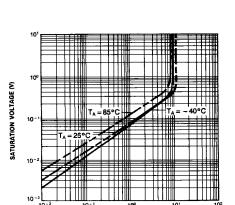


Figure 3. Output Saturation Voltage vs Sink Current

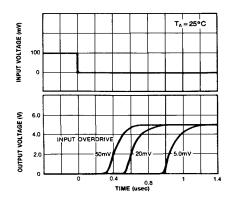


Figure 5. Response Time for Various Input Overdrive-Positive Transition

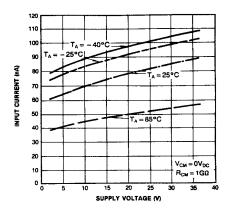
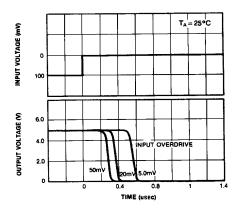
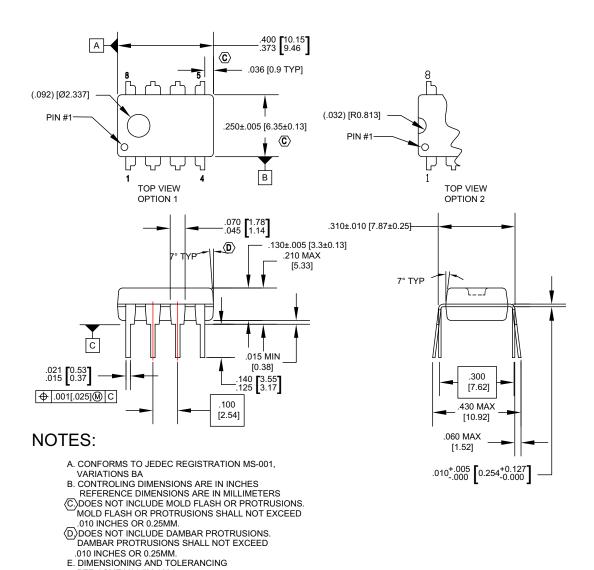


Figure 2. Input Current vs Supply Voltage




Figure 4. Response Time for Various Input Overdrive-Negative Transition

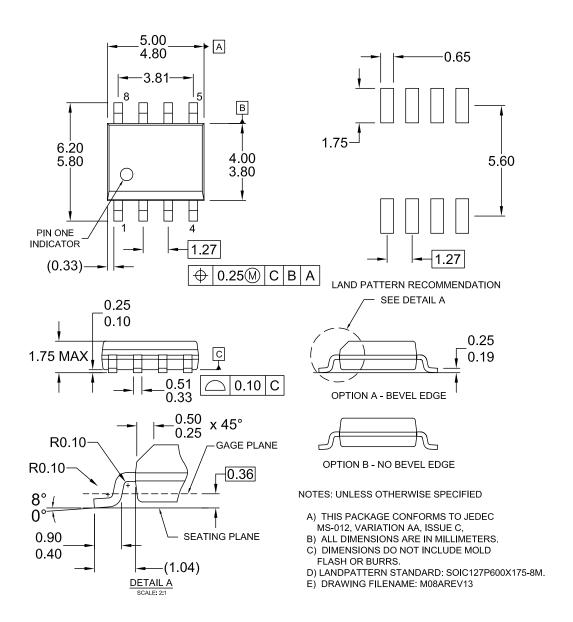
Mechanical Dimensions

Package

Dimensions in millimeters

8-DIP

N08EREVG


PER ASME Y14.5M-1994.

Mechanical Dimensions (Continued)

Package

Dimensions in millimeters

8-SOIC

Ordering Information

Product Number	Operating Temperature	Package	Packing Method
LM393N		8-DIP	Rail
LM393AN		0-DIF	Rail
LM393M	0 ~ +70°C		Rail
LM393MX	0 ~ +70°C	8-SOIC	Tape & Reel
LM393AM		8-SOIC	Rail
LM393AMX			Tape & Reel
LM2903N		8-DIP	Rail
LM2903M	-40 ~ +105°C	0 5010	Rail
LM2903MX		8-SOIC	Tape & Reel
LM293AN	-25 ~ +85°C	8-DIP	Rail

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com